Excitation Control in Power Systems
When the load on the supply system changes, the terminal voltage of the alternator also varies due to the changed voltage drop in the synchronous reactance of the armature. The voltage of the alternator can be kept constant by changing the field current of the alternator in accordance with the load. This is known as the excitation control method. The excitation of the alternator can be controlled by the use of an automatic or hand-operated regulator acting in the field circuit of the alternator. The first method is preferred in modern practice. There are two main types of automatic voltage regulators viz.
(i) Tirril Regulator
(ii) Brown-Boveri Regulator
These regulators are based on the “overshooting the mark principle” to enable them to respond quickly to the rapid fluctuations of load. When the load on the alternator increases, the regulator produces an increase in excitation more than is ultimately necessary. Before the voltage has the time to increase to the value corresponding to the increased excitation, the regulator reduces the excitation to the proper value.
Related topic – click here
- Types Of Losses In Transformer Explained
- Differences Between 8085 And 8086 Microprocessor
- 8085 Microprocessor Architecture | Working On 8085 Microprocessor
- Difference Between Single-Phase And Three-Phase Transformer
- Water Filter Essential For Purification Of Drinking Water
- Thermocouple Types And Comparison | Thermocouple Of 8000-Liter Storage Tank